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The turn-around task is one of the challenging maneuvers in automated 

driving which requires intricate decision making, planning and control, 

concomitantly. During automatic turn-around maneuver, the path 

curvature is too large which makes the constraints of the system severely 

restrain the path tracking performance. This paper highlights the path 

planning and control design for single and multi-point turn of 

autonomous vehicles. The preliminaries of the turn-around task including 

environment, vehicle modeling, and equipment are described. Then, a 

predictive approach is proposed for planning and control of the vehicle. 

In this approach, by taking the observation of the road and vehicle 

conditions into account and considering the actuator constraints in cost 

function, a decision is made regarding the minimum number of steering 

to execute turn-around. The constraints are imposed on the speed, 

steering angle, and their rates. Moreover, the collision avoidance with 

road boundaries is developed based on the GJK algorithm. According to 

the simulation results, the proposed system adopts the minimum number 

of appropriate steering commands while incorporating the constraints of 

the actuators and avoiding collisions. The findings demonstrate the good 

performance of the proposed approach in both path design and tracking 

for single- and multi-point turns. 

Keywords: 

Autonomous Vehicles 

Collision Avoidance 

Multi-point turn maneuver 

Nonlinear Model Predictive control 

Path Planning 

Turn-around Task 

1. Introduction 

During the past decade, the automotive industry 

has made significant progress in producing safe, 

comfortable, and cost-effective vehicles. Studies 

suggest that the areas of environment, safety, and 

passenger comfort are critical problems for 

automotive companies [1]. In the fields of 

planning, control, and decision-making, turning 

mission is recognized as one of the sophisticated 

scenarios. [2]. A special case of this mission is the 

turn-around task. In this operation on two-way 

roads, the car tries to place in the opposite lane with 

a complete change of the vehicle heading angle, 

i.e., 180o. This mission is vital in the circumstances 

involving emergencies, unanticipated events, or 

passenger demands. Accomplishing this task on 

narrow and wide roads have different issues and 

bring difficulties, especially for non skil drivers, 

such that improper execution of multi-point turn 

maneuver can damage vehicle body. Applying the 

automatic turn-around system, makes the mission 

safer, faster, and easier for all road users. 

In recent years, few attempts in the academic and 

industrial literature have been made to investigate 

the turning mission and its various aspects 

including decision making, planning, and control 
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[3-5]. There are ongoing projects in this field as a 

subset of autonomous driving, especially in major 

automotive technology developers such as Google 

Car. As a pioneer, Google refers to this mission as 

one of the most complex driving maneuvers, even 

for experienced drivers [2].  

Model predictive control (MPC) is one of the 

most popular techniques in the field of autonomous 

vehicle (AV). Thanks to the extensive 

improvement of the hardware technologies in 

computer sciences and also the extensive research 

done in the theory of optimal control, MPC is able 

to overcome challenges arising in computational 

burden, optimality, and applying more physical 

constraints of the real-world problems [6-10]. In 

the literature of AVs, the predictive strategy is used 

for decision making, motion control, planning and 

also the combination of the mentioned tasks. 

The purpose of motion control is to make the AV 

follow a reference trajectory while considering 

input constraints during the motion. In [11], an 

adaptive Multi-MPC is used to the task of path 

tracking, which benefits from weight adaptation to 

be utilized in different driving scenarios. In [12], a 

MPC is hired to fulfil the task of path following and 

yaw stability using torque vectoring, in high speed 

lane-changes. In [13, 14], the problem of motion 

control for the task of cut-in of autonomous 

vehicles is investigated by the MPC. The 

prediction task is done using long short term 

memory networks and lateral velocity control is 

done by the MPC [13]. Also, the task of cut-in in 

different scenarios is investigated using MPC, 

along with the prediction of cut-in using a rule-

based method [14]. Besides, in [15] a nonlinear 

predictive control (NMPC) is investigated that 

includes the trajectory tracking of a path with 

waypoints in the presence of modelling 

uncertainties, guarantying the robustness of the 

NMPC controller. In addition, MPC strategy is 

hired for many other challenging cases of motion 

control, including the high accuracy prediction of 

changing velocity effect [16], learning-based MPC 

for race car control [17], and low computational 

burden Takagi-Sugeno MPC [18]. 

The aim of motion planning is to design a safe 

and feasible trajectory to be tracked by the 

controller, and also the task of decision-making is 

considered. In [19], a decision-making framework 

based on MPC is used to not only human-like 

decision process, but also for state prediction and 

collision avoidance path planning. In [20], Social 

behavior of the traffic participants and smooth 

decision-making of autonomous vehicles in the 

task of lane-change planning is considered using 

MPC. The design of a safe and maneuverable path 

in the head-on collision scenario is carried out with 

the help of MPC method in [21], which includes 

the uncertainties in the motion of the vehicle that 

has deviated from the opposite lane. Moreover, 

there are research works in the literature that use 

MPC to overcome other challenges like moving 

object constraints [22], nonlinearity of kinematic 

model [23], and possible future occupied spaces of 

the vehicles using reachability robustness analysis 

[24]. To design an efficient trajectory planning 

solution capable of spatial-temporal joint 

optimization, [25] utilized the differential flatness 

property of car-like robots to real-time trajectory 

optimization that can generate feasible trajectory 

under arbitrary constraints. 

There are many research in the literature that 

incorporate both planning and tracking in MPC for 

an autonomous vehicle. Using non-linear models 

in the path planning and control system design 

increases the computational load and leads to 

unwanted complexity. In [26], By examining the 

vehicle characteristics, the MPC is designed with 

less complexity than the non-linear models, which 

results in less computational load due to its 

independence from friction. In [27], an MPC 

control strategy is hired to design the vehicle's 

lateral motion in curved paths, by considering the 

dynamic constraints of the vehicle. Furthermore, 

the designed path is smooth and benefits from 

continuity, and also the passenger safety 

challenges have also been taken into account in 

path following task. 

According to the best knowledge of the authors, 

the nonlinear model predictive control of turn-

around task has not been comprehensively studied 

so far. The contributions of this research are listed 

as below. 

• Considering the constraints include the 

limit of the steering wheel angle, speed and 

rate of them make better path tracking 

performance which are done using model 

predictive control. 

• However, for turn-around task, the 

accuracy of the linearized prediction 

model is insufficient. To address this issue, 

a path tracking controller based on 

nonlinear model predictive control was 

proposed in this paper. 

• The advantage of the proposed method is 

that all tasks of decision making, planning 

and controlling the motion of the 

autonomous vehicle in the turn-around 
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maneuver are performed simultaneously, 

in an integrated form. 

• The control-oriented model used in 

simulations, imposes a low computational 

load to the processing system, and on the 

other hand, the validation of the model is 

carried out with the dynamic behavior of 

the vehicle. 

• The proposed system is investigated in 

roads with different widths, and is able to 

decide the required number of steering 

commands (single or multi-point steering 

commands) was used to turn-around, 

planning, and control of the vehicle. 

According to the contents, the turn-around task 

will be described in details, in the next section. 

Then, the proposed approach, including collision 

avoidance constraints and nonlinear model 

predictive control, is presented. In the following, 

the simulation setup and results are prepared. First, 

the control-oriented model is validated, then, the 

simulations are performed for the turn-around task 

in various scenarios and discussed. Finally, the 

conclusion section summarizes the whole paper. 

2. Description of the turn-around task 

2.1. Environment 

Figure 1 shows a schematic of single and multi -

point turn maneuver on narrow and wide roads. 

The point 𝑃 is introduced as the midpoint of the car 

rear axle. The lateral distance from the midpoint to 

the road curb in the opposite lane equals 𝑎, and 

𝑊𝑎 = 𝑊𝑟 −𝑊𝑣  represents the whole permissible 

width of the road that restricts the vehicle 

operational area. 

The single-point turn in Figure 1-a, is defined as 

a turn whose sign of speed does not change during 

the maneuver. Whereas, the multi-point turns 

experience at least two change of speed sign, as in 

Figure 1-b. For instance, three and five -point turns 

have two and four speed sign change, respectively. 

For single-point turn, the execution zone is 

supposed to be adequately large to turn-around 

with a single maneuver. After the vehicle reaches 

the opposite lane, it is placed at a safe distance from 

the right side of the road, so as not to violate the 

smooth flow of the traffic. 

Although U-shaped turning is more desirable 

than other turning maneuvers, it may not be 

possible in specific driving scenarios. This occurs 

when the geometry of the road and its allowable  

a
rW

P

 
(a) 

a rW

P

 
(b) 

Figure 1: Schematic of the turn-around task, (a) 

Single-point turn (U-turn) on the wide road, (b) Three-

point turn on the narrow road. 

width for reversing the vehicle heading are less 

than the minimum width of the single-point turn, 

𝑊1𝑚𝑖𝑛. However, if the road still has the capacity 

that the vehicle reverse its heading, the task of 

turning around can be performed by several 

maneuvers, 𝑊𝑁𝑚𝑖𝑛 . The best decision should be 

made to choose the least number of commands, 

depending on the situation. A standard 

recommendation to start this task is to first the 

vehicle moves to a legal position parallel to the 

road boundary with a lane change-stop maneuver 

[28]. Then, the car must make a chain of back-and-

forth movements until it accomplish the mission. 

2.2. Vehicle model 

In turn-around task, the vehicle travels at low 

speeds. Therefore, the Ackermann steering is 

considered rolling around the instantaneous center 

of rotation without slipping. In this study, the 

vehicle has two axles with its bounding rectangle 

geometry in order to consideration of collision 

avoidance with road curbs. A schematic of the 

dual-track vehicle model is shown in Figure 2 and 

related parameter is described in Table 1. 
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Figure 2: Layout of the four-wheel vehicle model, 

the inertia and body frames. 

Table 1: Description of vehicle model parameters. 

Description Parameter 

Global coordinates 𝑋, 𝑌 

Heading angle 𝜓 

Front wheel steering angle 𝛿𝑓 

Vehicle speed 𝑉 

Track width 𝑡𝑤 

Wheelbase 𝐿𝑏 

Vehicle width 𝑊𝑣 

Vehicle length 𝐿𝑣 

Both full steering angles to left and right are 

assumed to be equal and related to the smallest 

radius 𝑅𝑙𝑜𝑐𝑘. 

This study utilize a kinematic bicycle model with 

front steering angle. Therefore, the motion of the 

vehicle is described using the nonlinear model in 

Equation (1), [29]. 

�̇� = 𝑉 cos𝜓            

�̇� = 𝑉 sin𝜓             

�̇� = (𝑉 𝐿𝑏⁄ ) tan 𝛿𝑓

 (1) 

Here, (𝑋, 𝑌) stand for the position of the vehicle 

and 𝜓 refers to its yaw angle. (𝑋, 𝑌, 𝜓) are the state 

variables for the vehicle state functions. The speed 

𝑉 and steering angle 𝛿𝑓 are the control inputs for 

the vehicle state functions. 

2.3. Equipment 

The perception module determines the current 

pose of the car, the dimension of the road, the 

turning location status, and possible obstacles. This 

module also prepares the required information 

about the environment for the planning and control 

process. To this end, the internal measuring devices 

and extrospective or infrastructure sensors can be 

utilized. In this research, it is assumed that all 

environmental information and sensor data are 

available. 

Proposed path planning and control module 

executes the maneuvers. Today, processors related 

to throttle, brake, and steering actuators commonly 

exist in vehicles; although, they may require some 

additional modifications. In short, acceleration is 

supplied by the engine control unit (ECU). The 

braking performance is modified using an 

electronic stability program (ESP) or anti-lock 

braking system (ABS). Steering of the vehicle is 

also executed using the steering column and an 

electronic steering processor. 

3. Proposed approach 

The overall structure of the proposed integrated 

planning and control system to perform the turn-

around task is presented in Figure 3. In this 

framework, all the modules including decision 

making, planning and control are embedded into 

the nonlinear predictive strategy. 

The planning section decides how and when to 

steer the vehicle towards a single-point or higher-

points turn by taking into account the priority of the 

least number of commands to the vehicle’s steering 

actuator. Furthermore, a prescribed initial guess for 

the desired path is required in the MPC, which is 

selected as a straight line connecting the start point 

to the final point of the maneuver. 

It should be noted that the decision and 

notification of the complete turn has been issued, 

and we assume that the required information of the 

traffic condition and the road geometry are 

provided by a perception system. Our contribution 

starts with the decision and calculations related to 

the type of turning maneuver, by checking the 

feasibility of the turn-around problem. 

The MPC controller is hired to calculate the 

desired path and design the control inputs to follow 

the mentioned desired path. The components of the 

planning and control system including the cost 

function and the terminal costs, collision avoidance 

constraints, physical constraints of the velocity and 

steering angle actuators, are described in the 

following section. 

3.1. Collision avoidance constraints 

Dynamic safety is necessary to avoid collision of 

the vehicle with road boundaries during the turning  
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Figure 3: Overall structure of the proposed integrated planning and control system. 

around task. The safety conditions are formulated 

by inequality constraints showing the determined 

minimum distance between the vehicle corners and 

road boundaries. To implement these constraints, a 

signed distance 𝑑𝑣,𝐵 parameter is defined 

𝑑𝑣,𝐵 = min
𝜌
{‖𝜌‖2: 𝑣 ⊕ 𝜌 ≠ ∅}

− min
𝜌
{‖𝜌‖2: 𝑉 ⊕ 𝜌 = ∅} 

(2) 

Where 𝑣  and 𝐵  stand for the vehicle geometry 

and the boundaries of the road, 𝜌  denotes the 

translation from 𝑣 , and ⊕  is the sumset. After 

calculation of 𝑑𝑣,𝐵 at each moment, the trajectory 

must be generated in such a way that the distance 

between the vehicle traveling it and the road 

boundaries is greater than the safety threshold. The 

schematic of the collision avoidance constraints are 

shown in Figure 4. 

In order to compute the signed distance, an 

approximate method is utilized known as a GJK 

algorithm [25]. This algorithm prepares an 

efficient computation of signed distances which is 

suitable for our optimization problem in nonlinear 

model predictive control method. In this problem, 

we only need to check each vertex of the vehicle 

body to get the minimum signed distance. 

Moreover, the lower bound of a safety distance is 

predetermined to guarantee collision avoidance. 

3.2. Predictive planning & control formulation 

Applying the model predictive approach is a 

good way to handle multiple constraints and large 

curvature of the reference path. The goal of the 

vehicle is to turn in narrow and wide roads without 

colliding and considering constraint conditions 

mainly the longitudinal acceleration, speed, 

steering angle and steering angular velocity of the 

vehicle. 

The core of designing a nonlinear model 

predictive controller is to establish a predictive 

model and design an optimization function. In a 

path-following controller, the function of the 

predictive model is to predict the possible future 

position of the vehicle according to the current 

pose state of the vehicle and possible future control 

inputs. The output of the vehicle state function is 

the same as the state of the vehicle, (𝑋, 𝑌, 𝜓 ). 

Therefore, the nonlinear model predictive 

controller is created with three states, three outputs, 

and two manipulated inputs. 

To establish a prediction model based on the 

kinematics model of the vehicle, the control-

oriented model is written in general form as in 

equation (3). 

𝑑𝑥 𝑑𝑡⁄ = 𝑓(𝑥, 𝑢),     𝑥 = [
𝑋
𝑌
𝜓
] , 𝑢 = [

𝑉
𝛿𝑓
] (3) 

In this section, the path planning and tracking 

controller for automatic turn based on linear time 

varying model predictive control and the nonlinear 

one are proposed. It is noticed that the reference 

point for the vehicle pose is located at the center of 

rear axle. 

The Euler method is utilized for discretizing 

equation (3), with the current moment 𝑡.  

𝑥(𝑡 + 1|𝑡) = 𝑥(𝑡|𝑡) + 𝑇. 𝑓(𝑥(𝑡|𝑡), 𝑢(𝑡|𝑡)) (4) 
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Figure 4: Schematic of the collision avoidance constraints. 

Now, defining the prediction and control 

horizons 𝑁𝑝 and 𝑁𝑐, the pose states of the vehicle 

at each step are calculated as in equation (5). 

 

 

𝑥(𝑡 + 1|𝑡) = 𝑥(𝑡|𝑡) + 𝑇. 𝑓(𝑥(𝑡|𝑡), 𝑢(𝑡|𝑡))

𝑥(𝑡 + 2|𝑡) = 𝑥(𝑡 + 1|𝑡) + 𝑇. 𝑓(𝑥(𝑡 + 1|𝑡), 𝑢(𝑡 + 1|𝑡))

   ⋮                            ⋮                                          ⋮               
𝑥(𝑡 + 𝑁𝑐 + 1|𝑡) = 𝑥(𝑡 + 𝑁𝑐|𝑡) + 𝑇. 𝑓(𝑥(𝑡 + 𝑁𝑐|𝑡), 𝑢(𝑡 + 𝑁𝑐|𝑡))

   ⋮                            ⋮                                          ⋮               

𝑥(𝑡 + 𝑁𝑝|𝑡) = 𝑥(𝑡 + 𝑁𝑝 − 1|𝑡) + 𝑇. 𝑓 (𝑥(𝑡 + 𝑁𝑝 − 1|𝑡), 𝑢(𝑡 + 𝑁𝑐|𝑡))

 (5) 

 

The deviation between the vehicle pose and the 

reference path in the predicted time domain is the 

error obtained by the prediction. 

𝑒(𝑡 + 𝑖|𝑡) = 

   𝑥(𝑡 + 𝑖|𝑡) − 𝑥𝑟𝑒𝑓(𝑡 + 𝑖|𝑡),     𝑖 = 1, … , 𝑁𝑝 
(6) 

Where 𝑥𝑟𝑒𝑓 denotes the pose state information of 

the tracking target point on the reference path. 

Equations (3) to (6) are the predictive model of 

the automatic turning path tracking controller. 

Based on the above model, the nonlinear model 

predictive controller uses a customized cost 

function, which is defined in a manner similar to a 

quadratic tracking cost plus a terminal cost. In the 

following custom cost function in equation (7), 

𝑥(𝑡) denotes the states of the vehicle at time 𝑡, the 

parameter 𝑑 represents the duration of simulation, 

and 𝑥𝑟𝑒𝑓 is the target pose of the vehicle. 

In equation (7), the first penalty term is an error 

penalty term, the function of the second penalty 

term is to make the automatic turning path as 

smooth as possible, and the rest functions are for 

the terminal point. In this cost function, 𝐐𝑝 and 𝐑𝑝 

are constant tracking weight matrices, 𝐐𝑡  and 𝐑𝑡 
are terminal weight matrices, respectively. 

On the other hand, for the constraint of input 

values, some studies has been conducted [30]. In 

mentioned research, the bound of these values has 

been determined using experimental test based on 
 

𝐽 = ∫ [(𝑥(𝑡) − 𝑥𝑟𝑒𝑓)
𝑇
𝐐𝑝(𝑥(𝑡) − 𝑥𝑟𝑒𝑓) + 𝑢

𝑇(𝑡)𝐑𝑝𝑢(𝑡)] 𝑑𝑡
𝑑

0

+ (𝑥(𝑑) − 𝑥𝑟𝑒𝑓)
𝑇
𝐐𝑡(𝑥(𝑑) − 𝑥𝑟𝑒𝑓) + 𝑢

𝑇(𝑑)𝐑𝑡𝑢(𝑑) 

(7) 
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the actual vehicle, so it can be written: 

−𝑉𝑚𝑎𝑥 ≤ 𝑉 ≤ +𝑉𝑚𝑎𝑥
−�̇�𝑚𝑎𝑥 ≤ Δ𝑉 ≤ +�̇�𝑚𝑎𝑥
−𝛿𝑚𝑎𝑥 ≤ 𝛿 ≤ +𝛿𝑚𝑎𝑥
−�̇�𝑚𝑎𝑥 ≤ Δ𝛿 ≤ +�̇�𝑚𝑎𝑥

 (8) 

Moreover, to avoid collisions with road 

boundaries, the nonlinear model predictive 

controller must satisfy the following inequality 

constraints, where the minimum distance 𝑑𝑖𝑠𝑡𝑚𝑖𝑛 

to all obstacles must be greater than a safe distance 

𝑑𝑖𝑠𝑡𝑠𝑎𝑓𝑒: 

𝑑𝑖𝑠𝑡𝑚𝑖𝑛 ≥ 𝑑𝑖𝑠𝑡𝑠𝑎𝑓𝑒 (9) 

In this study, the vehicle is modelled as collision 

box and the distance from vehicle to road curb is 

computed using check collision in Figure 4. 

In general, the automatic turning path tracking 

control problem is transformed into the following 

multi-constraint quadratic programming problem: 

 min{𝐽(𝑒(𝑡), 𝑢(𝑡))} 

𝑠. 𝑡.

{
 
 

 
 
−𝑉𝑚𝑎𝑥 ≤ 𝑉 ≤ +𝑉𝑚𝑎𝑥
−�̇�𝑚𝑎𝑥 ≤ Δ𝑉 ≤ +�̇�𝑚𝑎𝑥
−𝛿𝑚𝑎𝑥 ≤ 𝛿 ≤ +𝛿𝑚𝑎𝑥
−�̇�𝑚𝑎𝑥 ≤ Δ𝛿 ≤ +�̇�𝑚𝑎𝑥
𝑑𝑖𝑠𝑡𝑚𝑖𝑛 ≥ 𝑑𝑖𝑠𝑡𝑠𝑎𝑓𝑒

 
(10) 

By solving equation (10), one can obtain an 

optimal control sequence. The initial guesses for 

the state solutions are defined by straight lines 

between the initial and target poses of the vehicle. 

4. Results and discussion 

4.1. Simulation setup 

To appraise the performance of the proposed 

approach in different driving scenarios of both 

single-point and multi-point turns, simulations are 

performed in MATLAB software. The parameters 

of the autonomous vehicle in simulations are 

provided in Table 2. 

 

Table 2: Values of vehicle model parameters in 

simulations. 

Parameter Value (unit) 

𝑡𝑤 1.57 m 

𝐿𝑏 2.58 m 

𝑊𝑣 1.77 m 

𝐿𝑣 4.08 m 

𝛿max 33 o 

𝑉max 2 m/s 

�̇�max 2 o/s 

�̇�max 0.4 m/s2 

The inputs of the vehicle including velocity and 

front steering angle are bounded in the range of [-

2, 2] m/s and [-33, 33]o, respectively. Furthermore, 

the constraints on the rate of the velocity and 

steering angle are 4𝑇𝑠 and 𝜋𝑇𝑠 9⁄ , which 𝑇𝑠 = 0.1 

s. The performance of the proposed method is 

investigated using the set of the control parameters 

including the sample time 𝑇𝑠, prediction horizon 𝑝, 

and the control horizon 𝑚 for the nonlinear model 

predictive controller and weight matrices for each 

scenario. Other parameters like safety distance 

from road boundaries and maximum number of 

solving iterations are set to be 0.1 m and 40, 

respectively. In order to improve the stability 

properties, a sufficiently large prediction horizon 

must be chosen. 

4.2. Validation of the control-oriented model 

In this paper, the kinematic model is studied, 

which is often used for trajectory planning [31]. In 

this section, the validation of this model for our 

turn-around task problem is illuminated. To this 

end, a 9 degrees of freedom (9-DoF) dynamic 

model is developed which should be compared 

with kinematic model. The 9-DoF dynamic model 

is proper to model the longitudinal, lateral, pitch 

and roll motions. The values of parameters utilized 

in simulation of the dynamic model are given in 

Table 3. 

Under different conditions and various inputs, 

modeling errors and limitations of the kinematic 

model can be verified. The results indicate that 

errors of kinematic model are ignorable until the 

velocity of about 7 m/s, which is expected based on 

known theories [29]. However, turn-around task is 

a low-speed maneuver, which is consistent with 

these conditions and is acceptable. Also, the 

maximum values of input commands in equation 

(8) is considered in proposed NMPC. Therefore, 

the similar velocity and steering wheel angle is 

exerted to these two models. 

Table 3: Values of 9-DoF dynamic model parameters. 

Parameter Description Value (unit) 

𝑚 Vehicle mass 2000 kg 

𝑙𝑓 Front overhang 1.23 m 

𝑙𝑟 Rear overhang 1.35 m 

𝐿𝑏 Wheelbase 2.58 m 

𝑊𝑣 Vehicle width 1.77 m 

𝐶𝑑 Drag coefficient 0.3 

𝑡𝑤 Track width 1.57 m 

𝐶𝑦,𝑓 Front corner stiffness 12 kN/rad 

𝐶𝑦,𝑟 Rear corner stiffness 11 kN/rad 

𝐿𝑣 Vehicle length 4.08 m 

𝐼𝑧𝑧 Yaw polar inertia 4000 kg.m2 

𝐶𝐿 Lift coefficient 0.1 
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The graphic display of velocity and steering 

wheel angle commands is depicted in Figure 5-a. 

The traveled path and yaw rate of kinematic and 

dynamic model are compared in Figure 5-b and 

Figure 5-c, respectively. The results show that the 

kinematic model has a satisfactory performance. 

4.3.Single-point turn maneuver 

In the following simulation, the control 

parameters including the output tracking weight 

matrices 𝐐𝑝 and 𝐐𝑡, and the input weight matrices 

𝐑𝑝 and 𝐑𝑡 are considered as: 

𝐐𝑝 = [
0.1 0 0
0 1 0
0 0 10

],     𝐑𝑝 = 0.01 𝐼2×2

𝐐𝑡 = [
0.1 0 0
0 5 0
0 0 100

],     𝐑𝑡 = 0.1 𝐼2×2

 (11) 

 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5: The validation results, (a) Inputs, (b) 

Travelled path, (c) Yaw rate. 
 

𝐐𝑝 = [
0.1 0 0
0 1 0
0 0 10

],     𝐑𝑝 = 0.01 𝐼2×2

𝐐𝑡 = [
0.1 0 0
0 5 0
0 0 100

],     𝐑𝑡 = 0.1 𝐼2×2

 (12) 

And the prediction and control horizons are 

selected as 65. 

Figure 6 demonstrates the capability of the 

proposed nonlinear predictive system to generate 

and follow the real path of the single-point turn. 

The proposed predictive system is not only able to 

design the vehicle's path by taking into account the 

non-collision with the road boundaries, but also is 

able to follow the designed path. In addition, it is 

able to set the final values of the lateral position 

and orientation of the vehicle to the desired values. 

On the ground that the weight factor corresponding 

to the final longitudinal position of the vehicle is 

set to be [𝐐𝑡]1×1 = 0.1, the importance of the final 

longitudinal distance is much less compared to the 

lateral distance and the final orientation, which is 

clearly observed in Figure 6. 

The time histories of the velocity and front 

steering angle are presented in Figure 7-a and -b, 

respectively. Both of the control inputs lie in the 

prescribed allowable regions. Practically speaking, 

after an initial assessment of the scene by an expert 

driver in order to trade-off between the required 

traveled longitudinal and lateral distances, he tries 

to make use of the full capability of both velocity 

and front steering angle of the vehicle, and when 

time passes, he decreases the steering angle. The 

results of the velocity and front steering angle in 

Figure 7 justifies the expected behavior for the 

autonomous vehicle. 

4.4.Multi-point turn maneuver 

4.4.1. Case one: Three-point turn 

In this maneuver, the control parameters 

including the weighting matrices 𝐐𝑝 and 𝐐𝑡, and  

 
Figure 6: The real path in single-point turn task. 
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(a) 

 
(b) 

Figure 7: The control inputs in single-point turn 

task. (a) Velocity, (b) Front steering angle. 

the input weight matrices 𝐑𝑝  and 𝐑𝑡  are 

considered as below. 

𝐐𝑝 = [
0.1 0 0
0 1 0
0 0 10

],     𝐑𝑝 = 0.01 𝐼2×2   

𝐐𝑡 = [
0.1 0 0
0 1.5 0
0 0 100

],     𝐑𝑡 = 0.1 𝐼2×2

 (13) 

And the prediction horizon and control horizon 

are selected as 100 and 70, respectively. 

Figure 8 shows the ability of proposed strategy 

for the three-point turn. In operating tactics for 

three-point turn, the car movement is started by 

turning forward from a specific position and then 

the heading direction of the car is adjusted by two 

times changing back and forth in the allowed space. 

Finally, the remaining section of the maneuver is 

done by turning forward without exceeding the 

opposite border of the road. 

The velocity and steering angle of the three-point 

turn are shown in      Figure 9-a and -b, respectively. 

 

Figure 8: The real path in three-point turn task.  

 
(a) 

 
(b) 

     Figure 9: The control inputs in three-point turn task. 

(a) Velocity, (b) Front steering angle. 

The amounts of the control inputs are bounded in 

the allowed range. As depicted in      Figure 9, the 

proposed nonlinear predictive method evaluates 

the geometry of the road and analyses the collision 

avoidance constraints, then predicts the minimum 

number of command to accomplish the task. The 

advantage of this predictive path selection is that 

the NMPC prevents the excess rotation of the 

vehicle in the middle of turning, which 

subsequently has decreased the steering angle and 

reduced tire wearing with the ground. 

4.4.2. Case two: Five-point turn 

In order to demonstrate the capability of the 

proposed approach in accomplishing turn-around 

task on narrower roads, five-point turn maneuver is 

also investigated. In the simulation of this 

maneuver, the control parameters including 𝐐𝑝 

and 𝐐𝑡, and the input weight matrices 𝐑𝑝 and 𝐑𝑡 

are considered as: 

𝐐𝑝 = [
0.1 0 0
0 1 0
0 0 1

],     𝐑𝑝 = 0.01 𝐼2×2      

𝐐𝑡 = [
0.1 0 0
0 50 0
0 0 100

],     𝐑𝑡 = 0.1 𝐼2×2

 (14) 

And the prediction horizon and control horizon 

are selected as 95 and 115, respectively. 

Figure 10 and Figure 11 reveal the performance 

of the assistance system subject to the relevant 

restrictions and constraints. 
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Figure 10: The real path in Five-point turn task. 

 

a) 

 

b) 

Figure 11: The control inputs in five-point turn task. (a) 

Velocity, (b) Front steering angle. 

 

5. Conclusions 

A new framework for simultaneous planning and 

control  of AVs in  turn-around  tasks is proposed. 

To this end, an approach is proposed based on 

nonlinear model predictive control which has 

sufficient accuracy for this problem rather than 

linear one. The constraints of speed and steering 

angle as well as collision avoidance with the road 

side are considered in the simulations. The results 

confirmed the excellent performance of the chosen 

approach in the motion planning and control 

process of turn around task. With this system, we 

achieve a higher turning precision, larger safety 

margin, and less turning time in turn around 

maneuver. As future works, we are studying the 

problem of decision-making and planning of turn 

around task in the presence of other vehicles and 

road users. 
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